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Goal: Disentangling Latent Representations in Medical Images Using 

Language-Guided Stable Diffusion

Introduction

1. Kumar et. al, PRISM: High-resolution & precise counterfactual medical image generation using language-guided stable diffusion, 

MIDL 2025.

2. Rombach et. al, High-resolution image synthesis with latent diffusion models, CVPR 2022.

3. Tan et. al, EfficientNet: Rethinking model scaling for convolutional neural network, ICML 2019.
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➢ 1st demonstration of language-guided latent space traversal for medical images.

➢ Enable identification of attribute-specific trajectories in the latent space.

➢ Support continuous, interpolatable transitions between images while preserving 

semantic content.
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Stable Diffusion fine-tuned on CheXpert Data

(a) Chest X-ray with no significant findings (neutral)

(b) Chest X-ray showing Pleural Effusion (style 1)

(c) Chest X-ray showing Support Devices (style 2)

(d) Chest X-ray showing Pleural Effusion, Support 

Devices (style 3)
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➢ Finetuning: Similar to PRISM[1], Stable Diffusion 1.5[2] is finetuned using public 

datasets - CheXpert and ISIC 2019. 
• Only the U-Net is trained while the VAE (encoder and decoder) remain frozen.

➢ Inference: A neutral image X0​ is generated from prompt embeddings e; 

attributes are added using modified embeddings e′.
• During reverse diffusion, e′ replaces the original text embeddings e at some timestep t. 

Qualitative Results

➢ We propose a new metric, Classifier Flip Rate along a Trajectory (CFRT), to validate disentanglement along 

the specified (style) trajectory.

➢ X is set of all the samples x, xA
’ is the conditionally synthesized images where attribute A is flipped.

➢ f is the classifier and           is the indicator function with value 1 if the condition is true and 0 otherwise.

➢ Sampling closer to the timepoint t=0 results in a synthesized image similar to the original image.

Architecture: Latent Trajectory Traversal

➢ Efficient-Net[3] is trained on real data for disease or artifact classification. 

➢ Evaluating synthesized images, 2500 samples per sub-class.

➢ Learned Perceptual Image Patch Similarity (LPIPS) shows visual quality of these images.

➢ Cosine similarity between the direction of the latent representation of the conditionally 

generated image at a timestep relative to the latent of the original (“neutral”) image.

➢ The cosine similarities indicate the non-linearity of trajectories for different attributes.
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Text prompt for neutral image – Normal chest 

x-ray with no significant finding

Device Trajectory: Chest x-ray 

showing support devices

Disease Trajectory: Chest x-ray 

showing Pleural Effusion

➢ t-SNE plot of generated latent vectors 

of Stable Diffusion sampled from 
noise shows disentanglement.

➢ Traversal along the trajectory 

amplifies the desired attribute without 

altering confounding factors, 

indicating disentanglement in the 

Stable Diffusion latent space.
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